Airborne transmission: Why the superbug epidemic may be more serious that we previously thought

Tuesday, August 27, 2013 by: Ethan A. Huff, staff writer
Tags: superbugs, epidemic, disease transmission

eTrust Pro Certified

Most Viewed Articles
Popular on Facebook
CDC issues flu vaccine apology: this year's vaccine doesn't work!
The five biggest lies about Ebola being pushed by government and mass media
Ultraviolet light robot kills Ebola in two minutes; why doesn't every hospital have one of these?
Tetanus vaccines found spiked with sterilization chemical to carry out race-based genocide against Africans
Biologist explains how marijuana causes tumor cells to commit suicide
Companies begin planting microchips under employees' skin
The best way to help your body protect itself against Ebola (or any virus or bacteria)
NJ cops bust teenagers shoveling snow without a permit
Russia throws down the gauntlet: energy supply to Europe cut off; petrodollar abandoned as currency war escalates
McDonald's in global profit free fall as people everywhere increasingly reject chemically-altered toxic fast food
W.H.O. contradicts CDC, admits Ebola can spread via coughing, sneezing and by touching contaminated surfaces
Top ten things you need to do NOW to protect yourself from an uncontrolled Ebola outbreak
Chemotherapy kills cancer patients faster than no treatment at all
FDA targets Dr. Bronner's Magic Soaps for sharing health benefits of coconut oil
U2's Bono partners with Monsanto to destroy African agriculture with GMOs
Why flu shots are the greatest medical fraud in history
Governments seize colloidal silver being used to treat Ebola patients, says advocate
Flu vaccine kills 13 in Italy; death toll rises

(NaturalNews) Those exceptionally virulent, drug-resistant bacterial strains known as "superbugs" that increasingly threaten hospital patients around the world just became a whole lot more menacing. A new study published in the journal Building and Environment reveals that the deadly critters are capable of spreading not only through direct contact but also through the air, which means individuals may be able to get infected just by breathing contaminated air.

To arrive at this shocking conclusion, a team of researchers from Leeds University in the U.K. created a heated mannequin intended to resemble a human body, and injected the mannequin with tiny droplets of Staphylococcus aureus, which is closely related to the methicillin-resistant variety more commonly known as MRSA. They then triggered the mannequin to begin breathing out the bacteria as a human would, during which time they measured the spread of the bug at various test points around a hospital room.

Upon analysis, the team found that the highest levels of contamination with S. aureus were in the area immediately surrounding the mannequin, as can be expected. But varying levels of the strain were also found nearly 12 feet away from the mannequin, which suggests that deadly superbugs may be capable of spreading significant distances via the air, and infecting others, particularly hospital staff and other patients.

"The level of contamination immediately around the patient's bed was high, but you would expect that. Hospitals keep beds clean and disinfect the tables and surfaces next to beds," said Dr. Cath Noakes, lead author of the study. "However, we also captured significant quantities of bacteria right across the room, up to 3.5 meters away and especially along the route of the airflows in the room. We now need to find out whether this airborne dispersion is an important route of spreading infection."

The next step for the Leeds team is to use computer modeling to map the potential spread of superbugs in order to determine their airborne risk. Their findings will then be used to optimize the design of future hospital buildings, hospital room layouts, and medical equipment to minimize risk and impede the spread of bacteria and superbugs.

"Using our understanding of airflow dynamics, we can now use these models to investigate how different ward layouts and different positions of windows, doors, and air vents could help prevent microorganisms being deposited on accessible surfaces," added Marco-Felipe King, a Ph.D. student who helped design the test room for the study.

To learn more about the many natural ways to fight the spread of superbug infection, check out this helpful article:

Sources for this article include:

Join over four million monthly readers. Your privacy is protected. Unsubscribe at any time.
comments powered by Disqus
Take Action: Support by linking back to this article from your website

Permalink to this article:

Embed article link: (copy HTML code below):

Reprinting this article:
Non-commercial use OK, cite with clickable link.

Follow Natural News on Facebook, Twitter, Google Plus, and Pinterest

Colloidal Silver

Advertise with NaturalNews...

Support NaturalNews Sponsors:

Advertise with NaturalNews...


Sign up for the FREE Natural News Email Newsletter

Receive breaking news on GMOs, vaccines, fluoride, radiation protection, natural cures, food safety alerts and interviews with the world's top experts on natural health and more.

Join over 7 million monthly readers of, the internet's No. 1 natural health news site. (Source:

Your email address *

Please enter the code you see above*

No Thanks

Already have it and love it!

Natural News supports and helps fund these organizations:

* Required. Once you click submit, we will send you an email asking you to confirm your free registration. Your privacy is assured and your information is kept confidential. You may unsubscribe at anytime.